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Abstract
General distributions of relaxation times are discussed and then specialized to
two types associated with Kohlrausch stretched-exponential temporal response,
the K0 and K1 models. For the important choice of 1/3 for their beta shape
parameters, their specific distributions and different temporal responses are
first compared. Then the 16 real and imaginary parts of their dielectric- and
conductive-system frequency responses are presented in normalized form. Only
eight of these are distinct, however, because of pairing of identical dielectric
and conductive responses. There are five different peaked imaginary-part pairs,
two of which differ only in scale: the important conductive-system M ′′(ω)

response and the dielectric-system ε′′(ω) one. Their near equality explains
how the widely used but inappropriate original modulus formalism (OMF)
of Moynihan and associates, proposed in 1973, could be implicitly derived
from pure dielectric considerations and yet fortuitously yield conductive-system
response. The crucial effects of the endemic dielectric quantity εD∞ on K0- and
K1-model responses are illustrated, and they explain why conductive-system
shape parameter values derived from data fitting with the OMF model have been
misleadingly found to depend on temperature and charge-carrier concentration.
Instead, the K1 model fits data for a wide variety of homogenous materials with
a value of 1/3 independent of the values of these variables. Finally, different
fits of a historic experimental data set are compared to illustrate the present
findings.

Important acronyms and names

The addition of a C to a model designation, as in CK0, indicates the presence of a parallel
capacitance representing ε∞ for the K0 model and εD∞ for the K1 one. The addition of an S
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to a composite model, as in CK1S, indicates the presence of a series constant-phase-element
electrode-polarization element in the model.

CMF corrected modulus formalism
CSD conductive-system dispersion
DRT distribution of relaxation times
DSD dielectric-system dispersion
KD Kohlrausch DSD response model; K0 model with shape parameter βD

K0 Kohlrausch CSD response model or DSD one (K0 DSD); shape parameter β0

K1 Kohlrausch-derived CSD or DSD response model; shape parameter β1

OMF original modulus formalism; K1 model with shape parameter β1M

SE stretched exponential; see equation (1)
UN the K1 CSD model with its shape parameter, β1, fixed at 1/3

1. Introduction

There has been considerable confusion associated with dispersive frequency responses arising
from different distributions of relaxation times (DRTs), confusion to which I have contributed
my share. Therefore, a purpose of the present work is to try to resolve such past confusion and
to explore and compare different response possibilities. To do so, I start with a single seed:
the important Kohlrausch stretched-exponential (SE) temporal response,

φk(t) = exp[−(t/τo)
βk ] 0 < βk � 1, (1)

with k = D or 0, as discussed below. I then investigate the tree that grows out of this seed,
how it exfoliates, and then how its myriad temporal and frequency-domain results may be
differentiated. In the frequency domain one deals with immittances, and the results of primary
theoretical and experimental interest are those that show dispersed peaked response. Further,
it is they that yield the important similarities and differences discussed herein. The choice
of equation (1) is relevant both because of its endemic appearance in past experimental and
theoretical work and because it leads, with a specific fixed choice of βk , to frequency response
that fits data for a wide variety of materials, temperatures, and charge-carrier concentrations.
A list of acronyms is given above.

In the present work, I follow conventional usage of the word ‘relaxation’ as applied to
electrical responses, although it should properly be replaced by ‘retardation’ [1]. Further, I
use ‘relaxation’ as a blanket term indicating decay from an initial state to a final one when
referring to relaxation times and DRTs. In 1994 Phillips suggested that relaxation in complex
(disordered) systems is one of the most important unsolved problem in physics today [2], and
it is still a source of mystery, inadequate understanding, and opportunity.

More specifically, it is useful to make the distinction between relaxation of Debye type that
involves only a single relaxation time, and dispersive relaxation, where either many discrete
response times are present or a continuous distribution of response terms is an appropriate
description of the situation. Here, as usual, the work is concerned with continuous DRTs,
although discrete and continuous DRT responses have been discussed in, for example, [3–5].

Some of the complexity and misunderstanding present in the area of dispersive frequency
response arises from the existence of such response involving either dielectric-system
dispersion (DSD) or conductive-system dispersion (CSD), commonly represented by either a
distribution of dielectric relaxation times or by one of resistivity relaxation times, respectively.
In the past, actual CSD data sets, which often show thermally activated response with essentially
the same activation energy for the dc resistivity, ρ0, and for the characteristic relaxation time
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Table 1. Comparison of notations for relaxation-time distribution functions. Here, τo is the
characteristic relaxation time of the response model. DSD or CSD describe the type usually
involved, and the integration limits for normalization are listed as {a, b}.
Some previous and current Tau variables: τ Tau variable: y ≡ ln(τ/τo) = ln(x). See
work; refs. x ≡ τ/τo equations (2)–(4)

Böttcher and Bordewijk; [6] g(τ ) {0,∞} G(ln τ ) = τg(τ ) {−∞,∞} DSD

Moynihan et al; [7] g(τ ) Not identified, but their table 1 presents
{0,∞} approximate τg(τ ) DSD values. See

corrected results in figure 1 of [9]

Lindsay and Patterson; [8] ρ(τ ) {0,∞} G(τ ) = τρ(τ ) {−∞,∞} DSD

Macdonald; [9–11] G(τ ), GD(τ ) F(y) ≡ τG(τ ) {−∞,∞} DSD
G0(x) ≡ τoG0(τ ) G1(x) = (x/〈x〉0)G0(x) CSD
{0,∞} {0,∞}

This work g0(τ ) = gD(τ ) F0(y) ≡ τg0(τ ) {−∞,∞} CSD, DSD
gk (τ ) {0,∞} F1(y) ≡ x F0(y)/〈x〉01, {−∞,∞} CSD

of the response, τo, have often been characterized as involving dielectric response, perhaps
because the data were shown and analysed at the dielectric immittance level. As we shall see,
however, there are significant differences between CSD data presented at the complex dielectric
level and DSD data at that level. Dispersive CSD data sets involve mobile charged entities
(monopoles), while dispersive DSD ones involve dipoles and possibly higher multipoles.

For easy comparison, all synthetic responses are presented in normalized form. Section 2
first deals with DRTs in general, especially their three levels, and then compares the two most
important ones graphically for specific Kohlrausch DRT response choices. Next, in section 3,
the accurate temporal responses following from these DRTs are briefly discussed. Then in
section 4, all normalized DSD and CSD immittance frequency responses for the important
choice β = 1/3 are illustrated and compared,with emphasis on the five possible imaginary-part
peaked responses. Section 5 compares the still widely used original modulus formalism (OMF)
frequency response with its corrected version (the CMF) and shows how misconceptions in
the derivation of the OMF nevertheless led to important but misinterpreted results. Section 6
then shows how normalized CSD responses are modified by the presence of the frequency-
independent pure dielectric constant quantity εD∞, while section 7 compares fitting of the
frequency-response data of an ionic glass with OMF and CMF conductive-system-dispersion
models, with and without taking account of electrode polarization effects.

2. Distributions of relaxation times

Since a long, general review of DRTs and their responses is available [3], it is sufficient here
to begin by comparing different general DRT notations and relations and only then to consider
three specific DRT types associated with the SE response of equation (1). Table 1 includes a
partial list of DRT notations used by different authors. Although all these DRTs may be used
to generate either DSD or CSD response, these terms are included in the table to indicate either
the provenance of the work cited and/or the actual type involved.

In table 1, k-subscript values of D, 0, and 1 are included, with the k = 1 choice involving
equation (1) only indirectly, as discussed below. Because there is no difference in form
between the k = D and 0 DRTs, the k = 0 designations apply to both here but their distinction
is needed for CSD and DSD situations. Those designations without a subscript, such as F(y),
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implicitly involve either k = D or 0 subscripts. Note that the DRTs in column two that
involve an argument of τ have the dimension of that of τ−1, while those in column three are
dimensionless. The normalized τ variable in column three is x ≡ τ/τo ≡ exp(y).

So far we are still dealing with general DRTs, and relevant equations connecting important
quantities are

φk(t) =
∫ ∞

0
exp(−t/τ)gk(τ ) dτ =

∫ ∞

−∞
exp[−(t/τo) exp(−y)]Fk(y) dy (2)

and

Ik(ω) = I ′
k ± iI ′′

k ≡ Uk(ω) − Uk(∞)

Uk(0) − Uk(∞)
=

∫ ∞

0

Gk(x)

[1 + iωτox]
dx =

∫ ∞

−∞
Fk(y)

[1 + iωτo exp(y)]
dy

(3)

for temporal and frequency responses. Here Ik(ω) is the normalized frequency response
and Uk(ω) may represent any of the four immittances, ρ(ω), M(ω), σ (ω), or ε(ω): the
complex resistivity, the complex modulus, the complex conductivity,and the complex dielectric
constant, respectively, expressed in specific form. The k = D choice (with ± → −), where
UD(ω) = εD(ω), selects the DSD situation, while the k = 0 or 1 (with ± → +) ones are
appropriate for two types of Uk(ω) = ρk(ω) CSD response.

So far so good when the form of a DRT is known, but here we want to start with a known
temporal response, such as the stretched exponential of equation (1), and find expressions for
the DRTs associated with it, a difficult problem that is discussed in detail in [12]. Although
an expression for gk(τ ) may be obtained [8, 12] by taking a Fourier–Laplace transform of the
φk(t) of equation (2), when the specific SE form is used, closed-form analytic expressions for
gk(τ ) with k = D or 0 are only available for βk = 1/3, 1/2, 2/3, and 1.

Therefore, the formulae for the first two of these βk values and special series ones for
0 < βk < 1 are used in the LEVM complex-nonlinear-least-squares fitting and inversion
computer program [13] to obtain values of Fk(y) = τgk(τ ) for k = D or 0, and for

F1(y) ≡ x FD(y)/〈x〉D1 ≡ x F0(y)/〈x〉01. (4)

At least five-figure accuracy of these DRTs is available for the range 0.2 � βk � 0.8 and
it is somewhat less outside this range. Although F1(y) may be calculated from either the
k = D DSD or the equivalent k = 0 CSD DRT, it turns out to be of primary importance for
experimental CSD situations. Here, 〈x〉k1 is the average over the appropriate normalized DRT
for k = D or 0, given by

〈x〉k1 = β−1
k �(β−1

k ), (5)

where � is the Euler gamma function [8]. It follows that 〈x〉01 equals 2 or 6 for βk = 1/2 or
1/3, respectively. The k1 subscript indicates that the average is over the Fk(y) DRT involving
the β1 value. When the form of φk(t) is known, one can calculate 〈τ 〉k ≡ τo〈x〉k from
〈τ 〉k = ∫ ∞

0 φk(t) dt [7, 8].
Figure 1 shows some Kohlrausch distributions for several values of (Kk, βk), where Kk

denotes ones derived from SE Kohlrausch temporal response, as discussed above. We shall use
KD, K0, and K1 to designate these DRTs and, as well, the temporal and frequency response
models that follow from them when they are used in equations (2) and (3). The unnormalized
(k, β0) = (1, 1/3) dashed F1 curve was formed from the (0, 1/3) F0 one by multiplying the
latter by x ≡ τ/τo, where τo is fixed at a normalization value of 1 s for all synthetic data
results in the present work. Thus, the (0, 1/3) and unnormalized (1, 1/3) values are equal at
the x = 1 point. The unnormalized curve was then normalized by dividing by 〈x〉01 = 6 to
give the proper F1(y) distribution.
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Figure 1. Comparison of several Kohlrausch-derived distributions of relaxation times for Kk
models (with k = 0 or 1) for β0 equal to 1/3 and 2/3 and β1 = 1/3. Here and hereafter τo = 1 s.

In addition to the βk = 1/3 results shown in the figure, a (0, 2/3) DRT curve is also
included because it turns out that the corresponding CSD K0 frequency-response curve with
β0 = 2/3 and the CSD K1 one with β1 = 1/3 both lead to a high-frequency limiting log–log
slope of σ ′(ω) of 2/3 [14, 15], although their DRTs are evidently quite different. Finally, the
peak value of the (0, 1/3) and (1, 1/3) DRT curves are about 0.137 and 0.308, respectively,
while those for (0, 1/2) and (1, 1/2) are about 0.242 (as in figures 1 and 3 of [9]) and 0.462,
respectively.

3. K0 and K1 temporal responses

Since φ(t) response curves have been discussed previously for SE models with various values
of β as well as for some other models [14, 16, 17], only the temporal responses following
from the DRTs of figure 1, using equation (2), are considered here and are shown in figure 2.
The (0, 1/3) and (0, 2/3) curves are necessarily of exact SE form. Even though the (1, 1/3)

curve appears quite similar to the (0, 2/3) one except for displacement in time, it is appreciably
different. Not only do the two responses differ in their shapes in the 0.7 < φ < 1 region but
log–log plots show that they approach zero appreciably differently. In fact, when the (1, 1/3)

data were fitted with a (0, β0) SE model, the relative standard deviation of the fit, SF, turned
out to be about 0.04 and the β0 estimate was close to 0.53.

Specific deviations of the (1, 1/3) data from SE form are discussed in [17]. Finally, note
that φD behaviour (formally the same as that of the φ0 curves shown) is closely related for DSD
situations to the transient current response resulting on application of a step function potential
to the material, or to discharge from a fully charged condition. The normalized transient
current for either situation is directly related to −dφD/dt [8]. For CSD situations, however,
the φk curves of figure 2 represent charge-carrier correlation functions [14, 17].

4. All K0- and K1-model frequency responses

These responses are calculated using in equation (3) the F0 and F1 DRTs discussed in section 2.
We begin with the calculation of Ik(ω) results, for k = 0 and 1, separately for DSD and CSD
situations, all with βk = 1/3. Thus all such results are normalized and represent only basic
K0- and K1-model responses for these situations. Where needed, let C and D subscripts denote
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Figure 2. Comparison of three φk temporal response functions associated with the normalized
DRTs of figure 1. The (1, 1/3) one follows from the normalized (1, 1/3) DRT of figure 1, not from
the un-normalized one.

CSD and DSD situations and response quantities. It is worth emphasizing, however, that since
we shall often use the K0 designation to include both the KD model (which involves a DSD
relaxation-time distribution) and a CSD situation associated with a resistivity DRT, a K0 model
will usually be qualified with either DSD or CSD as necessary.

The actual calculations, using LEVM and k = 0 and 1, involved the DSD normalization
choices εk(0) = ε′

D(0) ≡ εD0 = 1, εk(∞) = ε′
D(∞) ≡ εD∞ = 0, and τo = 1 s, and the CSD

ones ρk(0) = ρC0 = ρ0 = 1 	 cm, ρk(∞) = ρ∞ = 0, and τo = 1 s. These choices lead, for
example, to the normalized CSD response I1(ω) = U1(ω)/U1(0) = ρ1(ω)/ρ0 ≡ ρC, and to
the normalized DSD response I0(ω) = U0(ω)/U0(0) = ε0(ω)/εD0 ≡ εD. There are separate
normalized response quantities, both denoted by ρC and εD, for the K0 and K1 models.

The general relations between the four different immittances are M = iωεVρ, σ = iωεVε,
ε = 1/M , and ρ = 1/σ , where εV is the permittivity of vacuum. When applying these relations
to calculate the three remaining normalized responses from either the normalized quantity ρC

or εD for either CSD or DSD situations, respectively, it is appropriate to set εV equal to 1 s rad−1

in order for all the resulting immittances, such as εC or ρD, to be normalized as well.
The second column of table 2 shows all the various normalized immittance notations for

the K0 and K1 models. Note that because each of the listed pairs is calculated from the same
DRT, such responses as ρC and εD for a given Kk model are exactly the same but apply at
different immittance levels. The bold-faced numbers in column 2 of the table denote those
responses whose imaginary parts are of peaked character, ones of particular interest. For the
rows designated by the numbers 4 and 5, the peaked CSD imaginary-part response is that of εC

after subtraction of the effects of ρ0; thus it is denoted ε′′
CS. In table 2, νp is the frequency at the

peak of any peaked imaginary-part response and τp ≡ 1/(2πνp) is the corresponding value of
τ at the peak. In addition to the high-frequency limiting slopes of quantities listed in column
2, the table also includes the value of the width parameter W for peak-response curves. For
Debye relaxation response, W ∼= 1.144, the minimum value, that when dispersion is absent.

As table 2 shows, there are only four different immittance response pairs or duals, and
results are shown for each of them for the K0 and the K1 models. The real and imaginary parts
of all these responses are shown in figures 3 and 4 and include the number identifications of the
second column of table 2 where appropriate. Note especially in the bottom panel of figure 4
that the K0 and K1 imaginary parts of εC and −ρD approach equality in the low-frequency
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Figure 3. Comparison of real- and imaginary-part normalized frequency responses for K0 and K1
models representing conductive systems (subscript C) and dielectric ones (subscript D) at different
immittance levels. See table 2 for further letter and number information, including high-frequency
slope values. As usual, −ρ′′ values are plotted along with ρ′ values here and in figures 4 and 5.
Here and hereafter νn = 1 Hz.

Table 2. Normalized dispersion results for βk = 1/3. Here IL denotes the immittance level, and
C and D subscripts stand for conductive-system dispersion and dielectric-system dispersion types,
respectively. The HF slope is the high-frequency-limiting log–log slope of a response curve, and
W is defined as log(ω+1/2/ω−1/2), where the ω±1/2 values are those at half-height of a peaked
dispersion curve. Quantities in parentheses are associated with ε′′

CS. The identifying numbers 1–5
in column 2 are used in figures 3–5. νp is the peak frequency and νn ≡ 1 Hz.

Peak HF real- HF imag.-
Model No., (IL)Type height νp/νn τp/τo part slope part slope Width W

K0 1 ρC, εD 0.1869 0.106 4 1.495 −1/3 −1/3 3.251
K1 2 ρC, εD 0.3254 0.004 403 36.15 −1 −4/3 1.894
K0 MC, σD — — — 2/3 2/3 —
K1 3 MC, σD 0.0312 0.106 4 1.495 0 −1/3 3.251
K0 4 εC, ρD (1.732) (0.004 878) (32.63) −2/3 −2/3 (2.108)
K1 5 εC, ρD (14.41) (0.001 787) (89.06) 0 −1/3 (2.183)
K0 σC, MD — — — 1/3 1/3 —
K1 σC, MD — — — 1 2/3 —

region and that even after subtraction of ρ0 effects, they both approach their unsubtracted
values in the high-frequency region but are appreciably different at lower frequencies.

The observant reader may be surprised that figure 4 shows non-zero values of ρDk0 ≡
ρ ′

Dk(0) for both of the K0 and K1 curves, unexpected for a pure dielectric situation that
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Figure 4. Comparison of further real- and imaginary-part normalized frequency responses for K0
and K1 models representing conductive systems and dielectric ones at different immittance levels.
In forming the ε′′

CS responses, the effect of ρ0 has been subtracted.

involves no mobile-charge effects. It turns out for the present normalized parameters with
the β = 1/3 choice that for the K0 model ρD00 = εC00 = εC1∞ = 6, and for the K1
ρD10 = εC10 = �(6)/�(3) = 60 [8, 10, 14]. An expression for εC1∞ is presented in the
following section. These results follow because in the general CSD case, where ρ∞ is not
necessarily 0 and �ρ ≡ ρ0 − ρ∞, one can first write, for k = 0 or 1,

εCk0 = [(�ρ)k/{εV(ρCk0)
2}]〈τ 〉k, (6)

where, as usual, we use ρ0 = 1/σ0 to represent ρCk0 for either value of k. The dual of this
equation, written for DSD conditions with k = D, is just [18]

ρD0 = [(�ε)D/{εV(εD0)
2}]〈τ 〉D, (7)

where εD0 ≡ εD00 and (�ε)D ≡ �εD ≡ εD0 − εD∞. Although a pure dielectric system thus
leads to a non-zero ρD0, the results in figure 3 indicate that σD0 is zero, in accordance with
physical reality.

Figure 5 shows complex-plane plot results for the three unsubtracted pairs that involve
peaked imaginary-part response and linear plots for all five peaked imaginary-part responses,
all normalized to peak heights of unity. As the figure shows, although the imaginary-part
responses for the pairs identified as 1 and 3 in table 2 are identical when further normalized
in this fashion, their complex-plane responses are mirror images and the arrowheads show the
direction of increasing frequency.
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Figure 5. (a) Normalized complex-plane responses for βk = 1/3 for the situations designated by
the numbers 1–3 in table 2. The arrows show the direction of increasing frequency. (b) Imaginary-
part responses, all normalized to a peak height of 1, for the situations designated by the numbers
1–5 in table 2.

5. CSD and DSD surprises

Recent work [14, 15, 17, 19] has demonstrated that the CSD K1 model with β1 = 1/3 fits
a wide variety of experimental frequency-response data for homogeneous glasses and single
crystals over appreciable ranges of temperature and concentration. Because this conclusion
is supported by both theory and experiment, the resulting model has therefore been denoted
by UN or U to emphasize its quasi-universality. Although such fits generally require that
the effects of the frequency-independent dipolar dielectric constant, εD∞, and of electrode
polarization be separately included in a composite model, as discussed in sections 6 and 7,
here we continue to deal just with the basic K0 and K1 responses described in section 4.

A ground-breaking macroscopic derivation and application of the K1 model for CSD
frequency-response situations appeared in 1973 [7], and its teachings have been used in a great
many other publications up to the present. Because of this widespread use, even after a crucial
defect in it was identified ten years ago, its further consideration seems justified. It made use
of the present equations (1) and (2) and also of

Ik(ω) =
∫ ∞

0
exp(−iωt)

(
−dφk(t)

dt

)
dt, (8)

for k = D or 0, a one-sided Fourier transform that connects Ik(ω) and φk(t). Since the
K0 model for fitting CSD data was not introduced until 1997 [10], it is clear that for the



638 J R Macdonald

1973 derivation k should be set to D in the above equation and also in equations (1) and (2),
or equivalently, to 0 with the proviso that a DSD situation is involved. In fact, the ID(ω)

introduced in [7], and denoted N∗(ω) there, may be directly identified with the normalized
K0 DSD εD(ω) quantity listed as No. 1 in table 2 and in figure 3, although Moynihan et al [7]
show a plot of it for β0 = 1/2 rather than 1/3.

These results lead to a surprising and hitherto unrecognized anomaly: how does a K0 DSD
analysis lead to a K1 CSD response model? The answer is somewhat subtle and complicated,
possibly explaining why the matter has escaped attention for 32 years. In brief, the reference [7]
derivation works because of a remarkable coincidence: namely, that except for a scaling
difference associated with 〈x〉, table 2 and figure 3 show that the imaginary parts of the K0
εD(ω) response, identified by the bold-faced number 1, and that of the K1 MC(ω), identified
by the number 3, are identical. For the present β1 = 1/3 choice, the peak value of the K0
responses marked 1 in table 2 are just six times larger than those for the K1 responses marked
3.

Therefore, if one deals only with CSD K1-model M ′′
C(ω) response in fitting data, a DSD

KD = K0 ε′′
D(ω) response model may be used to analyse such CSD response! In fact, the

Moynihan et al approach [7] has been referred to as the modulus formalism model and has
been widely used to estimate β1 by the width parameter, W , of experimental M ′′(ω) peaked
response curves. Since W , as defined in the caption of table 2, is independent of the actual peak
height of such a curve, the difference in scaling mentioned above and associated with the use
of a K0 DSD rather than a K1 CSD one, does not matter. The results of the reference [7] model
have been called the original modulus formalism (OMF) to distinguish it from the corrected
version described below.

So much for the mechanics of the OMF derivation, but what about its physics? The
reference [7] approach, based in part on earlier mechanical relaxation equations and on the
decay of an electric field at constant displacement, was used to analyse modulus-level CSD
response that involved ρ∞ = 0. It may be expressed in the present notation as

MC1(ω) = M ′
C1(ω) + iM ′′

C1(ω) = iωεVρ0 I1(ω) ≡ [1 − I01(ω)]/εZ , (9)

where the important effective-dielectric-constant quantity εZ ≡ 1/M ′
C1(∞) was defined as

εD∞ or, equivalently at that time, as ε∞. Only when the I01(ω) term in equation (9) is derived
from SE response, through the use of equations (2) and (8), should the general equation (9) be
then identified as a K1 response model, however. It is also worth mentioning that a normalized
expression formally equivalent to the Moynihan et al derivation of their version of equation (9)
(equation (3) of [7]) appeared ten years earlier [1, equation (A2)]. It applies to either electrical
or mechanical relaxation situations and involves an I0(ω) term consistent with the present
equation (3). Nevertheless, Moynihan et al [7] deserve much credit for first applying their
results to charged-carrier dispersion situations.

As pointed out since 1995 (e.g., [9, 19, 20]), the OMF identification of εZ is incorrect since
it introduces a dipolar-related dielectric constant into a purely mobile-charge CSD response
equation, and in addition, it leads to inconsistent response at different immittance levels [20].
The remaining problem is that in the OMF I01(ω) is the DSD KD = K0 response model
involving a βD = β0 value equal to the CSD K1 β1 value. See also the later DSD treatment
of [8]. But clearly, consistency should require that a mobile-charge-carrier CSD expression
such as equation (9) should not involve a pure dielectric dipolar response function such as
I0(ω) = ID(ω), and so the I01(ω) of equation (9) should be interpreted as involving only CSD
mobile-charge response.

In fact, a proper derivation of K1-model response, based on the F1(y) DRT of
table 1 [9, 10, 21] yields the MC and σD responses designated by 3 in table 2, and also leads
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to just the above equation (9) result, but with a different explicit expression for εZ in the CSD
situation, as well as an I01(ω) result associated only with mobile charge. Because the OMF
was incorrectly associated with εD, itself directly derived from DSD SE temporal response, it
is tempting but incorrect to associate the k = 1 K1-model I1(ω) directly with SE response by
using equations (2) and (8). In fact, accurate calculations of φ1(t) response using equation (2)
with β1 = 1/3 lead to appreciably different behaviour which only reduces to SE response in
the long-time limit. In actual calculations of K1 frequency response, it is more appropriate to
use its DRT in equation (3) than to use equation (9) because of inaccuracies in the calculation
of 1 − I01(ω) at low frequencies.

The macroscopic equation (9) derivation of MC1(ω) is consistent with the 1973 pioneering
continuous-time-random-walk microscopic theoretical analysis of Scher and Lax [22], which,
with a minor addition [21] and the specific choice of SE φ(t) temporal response, also leads to
the CSD K1 model of equation (9). The latter, especially with the theoretically predicted value
of β1 = 1/3 [14, 17], the UN model, is the only available one justified by both macroscopic
and microscopic approaches that yields excellent fits of both the real and imaginary parts of
experimental frequency-response data for homogeneous materials.

When the OMF analysis is corrected as above, resulting in the corrected modulus
formalism (CMF) CSD K1 model, one finds that the appropriate expression for εZ is

ε′
C1(∞) ≡ εC1∞ = (σ0/εV)/〈τ−1〉1 ≡ εMa/〈x−1〉1 = εMa〈x〉01 = [γ N(qd)2/(6kBεV)]/T .

(10)

The high-frequency-limiting effective dielectric constant, εC1∞, associated entirely with
mobile-charge effects, is likely to arise from the short-range vibrational and librational motion
of caged ions. Here εMa ≡ σ0τo/εV, involving the mobile-charge σ0 and τo parameters. The
quantity N is the maximum mobile-charge number density; γ is the fraction of charge carriers
of charge q that are mobile; d is the rms single-hop distance for a hopping entity, and kB is the
Boltzmann constant.

6. Effects of εD∞

Since the effects of εD∞ on frequency response were purposely omitted from the above basic-
response analyses, it is important to discuss these effects since they may be of great importance
in the analysis of actual experimental data. The endemic high-frequency-limitingquantity εD∞
is frequency independent in the range of usual immittance spectroscopy measurements. For
the un-normalized DSD situation, one writes εD(ω) = εD∞ + �εD ID(ω) with εD∞ and �εD

taken as separate fitting parameters. It reduces to the normalized Kohlrausch K0 = KD εD(ω)

response discussed above when εD∞ is set to zero and �εD to unity.
For the important CSD situation in the usual absence of DSD, the effects of εD∞ are

generally more complicated because mobile-charge dispersion leads to a new high-frequency-
limiting capacitative contribution, the εC1∞ ≡ ε′

C(∞) quantity of equation (10), when the data
are best represented by the k = 1 F1(y) DRT. The total high-frequency-limiting dielectric
constant is then ε∞ = εC1∞ + εD∞ [19, 21]. For the CMF UN model, εC1∞ is just 6εMa, and
for the normalization used above, εMa = 1.

Data fitting with a composite CSD model involving a free dielectric-constant parameter,
εx , in parallel with the response of a K1 or UN model leads to an estimate of εx = εD∞ and
an estimate of εC1∞ then follows from those of ρ0 and τo. Since ε′

C(∞) = 0 for the k = 0 K0
model, the presence of a free εx parameter in a composite K0 fitting model, the CK0, must
necessarily lead to an estimate of ε∞. If the data are most appropriately fitted by a k = 1
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Figure 6. Demonstration of the effect of non-zero εD∞ values on normalized M ′′
C response for the

CK0 model, showing the approach to full Debye response as εD∞ increases.

model, however, then the K0 ε∞ estimate will be that of ε∞ = εC1∞ + εD∞. Otherwise, it
follows that the ε∞ estimate is that of εD∞ alone.

The OMF approach [7] uses the CSD K1 fitting model but does not recognize the need
for a separate εx fitting parameter and the existence of εC1∞. Therefore, the OMF εZ of
equation (10) is forced during fitting to be an estimate of ε∞, not just εC1∞, and it will thus
improperly involve the DSD quantity εD∞. In consequence, when the expression for the
〈x〉01 quantity of equation (5) is used in equation (10), an incorrect estimate of β1 will be
obtained. Therefore, the experimentally inconsistent and theoretically inappropriate OMF
approach should never be used for fitting and for the estimation of β1.

Figure 6 shows the results of including εD∞ in a composite CSD model, the CK0, one
where the K0-model parameters are all normalized as in figures 3 and 4. Since M ′′

C response
is commonly used and plotted in both the OMF and CMF approaches, it is of most interest
to show results at this immittance level, both for K0 and K1 models. As figures 3 and 6
indicate, there is no peaked response present for the K0 model alone because ε∞ = 0, and
such response only appears for non-zero εD∞. We see that as εD∞ increases, more and more
of the response on the high-frequency side of the peak becomes of Debye character and thus
more of the original high-frequency curve with a slope of −2/3 is replaced by response with
a slope of −1. For data of this kind, estimation of β (=β1) by the OMF peak-width approach
would show this quantity increasing from the present actual β0 value of 1/3 for very small
εD∞ towards a value of unity for large εD∞.

The somewhat similar K1-model results of figure 7 are of more interest because of the
finding that most CSD data are best fitted with a composite K1 or UN model, the CK1 or
CUN, as discussed above. Here rDC ≡ εD∞/εC1∞ is the most important response quantity.
As it increases from zero, once again any OMF β1 estimate, which we will denote by β1M to
recognize this Moynihan approach, will increase from its appropriate value of 1/3 when rDC

is small towards unity as rDC increases. The complex-plane plots of figure 8(a) show such a
progression very clearly.

As discussed earlier [14], as rDC increases the basic UN part of the response becomes a
smaller and smaller relative part of the total response, one that becomes dominated by simple
Debye response involving ρ0, εD∞, and their relaxation time, τM ≡ ρ0εD∞. It is usually found
that εD∞ is nearly constant or increases slowly with increasing temperature while equation (10)
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Figure 7. Demonstration of the effect of a non-zero rDC ≡ εD∞/εC1∞ ratio on normalized M ′′
C

response for the CK1 = CUN model, showing the slow approach to overall Debye response as the
ratio increases.

0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8 0.90.9 1
0

0

0.20.2

0.40.4

0 0.20.2 0.40.4 0.60.6 0.80.8 1

0.50.5

1

1.51.5

2

β1M1M

lo
g

lo
g 1

010
(ε

∞
/ε/ε

c1c1
∞

)

CUN/OMFCUN/OMF β1=1/3=1/3

β1=1/3=1/3

(a)(a)

(b)(b)

Mc'

CUNCUN

M
c"

0

5050
1515

5

2.272.27

rDCDC=∞

Figure 8. (a) Exact complex-plane M-level normalized response curves using the CUN model for
various values of rDC ≡ εD∞/εC1∞. The top curve is that for pure dielectric Debye response,
appropriate when εC1∞ = 0, and the bottom one applies for the εD∞ = 0, a pure conductive-
system K1 situation. (b) The line connects β1M values, obtained from original-modulus-formalism
(OMF) fitting of exact CUN-model data with the CMF ratio ε∞/εC1∞ = 1 + rDC. Its equation
is log10(ε∞/εC1∞) = ∑3

k=0 ak(β1M)k , where a0 = −2.7689; a1 = 12.652; a2 = −15.844; and
a3 = 8.4510.

indicates that for full dissociation, where N is temperature independent, εC1∞ is proportional
to 1/T . Thus, one expects that rDC should usually increase as T increases [19]. Further, we



642 J R Macdonald

expect N to be proportional to the relative ionic concentration, again leading to decreasing
εC1∞ and to increasing rDC as the concentration diminishes [14, 19]. Thus, in both cases, one
expects that β1M will increase towards unity, as observed [16, 19, 23].

Because the OMF is properly inapplicable, the above dependences of β1M on temperature
and charge-carrier concentration should not be significant, but because hundreds of OMF fits
and β1M estimates have been published since 1973, it is still of interest to show their connection
with predictions of the widely applicable CUN fitting model. The line of figure 8(b) may be used
when a value of β1M is available to obtain a rough estimate of the CUN ratio ε∞/εC1∞ = 1+rDC,
and a more accurate estimate may be obtained using the polynomial-fit equation listed in the
figure caption. For situations where an original data set is unavailable for a CUN fit but where
OMF-fit estimates of both β1M and ε∞M are known, using ε∞M as an approximation for ε∞
allows one to obtain estimates of the associated CUN εC1∞ and εD∞ values from the present
graphical results without further fitting. An example is discussed in the next section.

7. A data-fitting example

In order to illustrate some important features of OMF and CMF fits of CSD data, it is particularly
appropriate to show and discuss fitting results for the Li2O·Al2O3·2SiO2 (LAS) data set, first
analysed in 1973 by Moynihan and associates in [7]. These authors did not show a log–log plot
of M ′ and only plotted results for ν � 1 Hz. Thus, the curvature of the M ′ response apparent
at the lowest frequencies in figure 9(a) did not appear in their results. Such curvature indicates
the presence of electrode polarization effects [15], ones not accounted for in [7]. As the figure
shows, a complex-nonlinear-least-squares CUNS-model fit using the LEVM program led to
excellent agreement with both the real and imaginary parts of the modulus-level data over the
full data range. The composite CUNS fitting model included a series constant-phase element
to model such effects, and they have been shown to frequently influence the high-frequency
region of the data as well as the low-frequency one [15].

The curves identified as K1-U in figure 9(a) are the result of an OMF fit without correction
for electrode effects. In order to obtain results similar to those shown in figure 2 of [7], this
fit was carried out using unity weighting, one that emphasizes the large over the small parts
of the data. Note its failure to match the data at its high-frequency end, a defect also apparent
in figure 2 of [7]. Such discrepancies have been widely observed in OMF fitting and were
characterized as ‘endemic’ in [7]. Over the years many unconvincing explanations for such
behaviour have been proposed, but, as comparison of the two fits shown in figure 9(a) indicates,
electrode polarization is the proper explanation.

The Moynihan et al OMF fit of the LAS data led to the estimated parameter values
β1M = 0.47, τo = 4.0 × 10−4 s, ε∞ = 9.09, and ε0 = 25–35. For comparison, the
parameter estimates obtained from the complex K1-U fit of figure 9(a) were β1 = 0.447,
τo = 3.87 × 10−4 s, ε∞ = 8.99, ε0 = 35.6, and ρ0 = 1.22 × 109 	 cm. When this fit
was repeated including electrode-polarization parameters and proportional weighting, more
appropriate parameter estimates were β1M = 0.468, τo = 3.83×10−4 s, ε∞ = 9.15, ε0 = 32.3,
and again ρ0 = 1.22 × 109 	 cm.

Parameter estimates obtained from the CUNS-P modulus level fit of figure 9(a) were
β1 = 1/3 fixed, τo = 4.37 × 10−5 s, ε∞ = 8.84, ε0 = 33.5, εD∞ = 6.098, εC1∞ = 2.738,
and ρ0 = 1.22 × 109 	 cm. When β1 was free to vary as well, the CK1S-model results were
β1 = 0.343, τo = 5.39 × 10−5 s, ε∞ = 8.86, ε0 = 33.1, εD∞ = 5.83, εC1∞ = 3.03, and
ρ0 = 1.08 × 109 	 cm, and the overall fit was equally good. Fitting at the conductivity level
led to a slightly worse fit with β1 = 0.347, τo = 5.84 × 10−5 s, ε∞ = 8.92, ε0 = 32.8,
εD∞ = 5.78, εC1∞ = 3.13, and ρ0 = 1.09 × 109 	 cm. The closely similar parameter
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Figure 9. (a) Original Li2O·Al2O3·2SiO2 (LAS) data and CK1S complex fit results with β1 = 1/3
fixed (the CUNS model) and proportional weighting; and an OMF K1 complex fit with unity
weighting and β1 = β1M free to vary. (b) Extrapolated responses of the CUNS-model and the
CUN-model using the fit parameters obtained from the CUNS fitting of (a), showing both low- and
high-frequency effects of electrode polarization, here represented by S, a series constant-phase-
element (SCPE) addition to the CUN model.

estimates are a good indication of the consistency of the data and the appropriateness of the
fitting model.

Finally, fitting of the imaginary part of the conductivity with εD∞ fixed yielded the
estimates β1 = 0.337, τo = 4.94 × 10−5 s, ε∞ = 8.72, ε0 = 34.0, εD∞ = 5.78 fixed,
εC1∞ = 2.94, and ρ0 = 1.09 × 109 	 cm. This fit was not quite as good as that when
both real and imaginary parts of the conductivity were simultaneously fitted, but it led to a β1

estimate even closer to 1/3. The fit was worse when εD∞ was fixed at 0 but led to the estimate
β1 = 0.331. The reason for holding εD∞ fixed when the composite fitting model involves
a series electrode-polarization model is discussed in [15]. As discussed in [20], the extreme
differences between the OMF M ′′ estimate of β1 = 0.468 and the σ ′-fit estimate of 0.33 or
0.34 are a clear indication of the inappropriateness and inconsistency of the OMF approach.

When the OMF β1M estimate of 0.468 is used in the graph of figure 8(b), one obtains
an estimate of ε∞/εC1∞ of about 3.16, leading, when the estimated value of ε∞M = 9.15 is
used, to the estimate εC1∞ 	 2.89. When the interpolation formula listed in figure 8(b) is used
instead, one obtains εC1∞ 	 2.59, a fairly poor estimate of the actual CUNS-model result of
3.13. The resulting εD∞ estimate of 6.56 is somewhat larger than the probable value of 6.1.
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Finally, the curves in figure 9(b) were calculated from the CUNS-P model parameter
estimates for an extended frequency range. They well illustrate the effect of the inclusion of
a series electrode polarization part in the full composite fitting model and show that if the
data of [7] had involved a wider frequency range, an electrode-polarization explanation of its
deviations from the OMF K1-model-fit predictions would doubtless have been proposed much
earlier.
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[6] Bőttcher C J F and Bordewijk P 1978 Theory of Electric Polarization 2nd edn, vol 2 (New York: Elsevier)
[7] Moynihan C T, Boesch L P and Laberge N L 1973 Phys. Chem. Glasses 14 122
[8] Lindsay C P and Patterson G D 1980 J. Chem. Phys. 73 3348
[9] Macdonald J R 1996 J. Non-Cryst. Solids 197 83

Macdonald J R 1996 J. Non-Cryst. Solids 204 309 (erratum) In addition, in equation (A2) G D should be GC D

[10] Macdonald J R 1997 J. Non-Cryst. Solids 212 95 (The symbol σ0 should be removed from the right end of
equation (12))

[11] Macdonald J R 2000 Inverse Probl. 16 1561
[12] Macdonald J R and Brachman M K 1956 Rev. Mod. Phys. 28 393
[13] Macdonald J R and Potter L D Jr 1987 Solid State Ion. 23 61

Macdonald J R 2000 J. Comput. Phys. 157 280 (The newest WINDOWS version, LEVMW, of the comprehensive
LEVM fitting and inversion program, may be downloaded at no cost by accessing http://jrossmacdonald.com
It includes an extensive manual and executable and full source code. More information about LEVM is
provided at this internet address)

[14] Macdonald J R 2005 Phys. Rev. B 71 184307
[15] Macdonald J R 2005 J. Phys.: Condens. Matter 17 4369
[16] Macdonald J R 1997 J. Appl. Phys. 82 3962

Macdonald J R 1998 J. Appl. Phys. 84 812
[17] Macdonald J R and Phillips J C 2005 J. Chem. Phys. 122 074510
[18] Macdonald J R 1996 Electrically Based Microstructural Characterization (Symp. Proc. vol 411) ed R A Gerhardt,

S R Taylor and E J Garboczi (Pittsburgh, PA: Materials Research Society) p 71
[19] Macdonald J R 2002 J. Chem. Phys. 116 3401
[20] Macdonald J R 2004 J. Appl. Phys. 95 1849
[21] Macdonald J R 2002 Solid State Ion. 150 263
[22] Scher H and Lax M 1973 Phys. Rev. B 7 4491
[23] Jain H and Krishnaswami S 1998 Solid State Ion. 105 129

http://dx.doi.org/10.1103/RevModPhys.35.940
http://dx.doi.org/10.1016/0022-3093(94)90421-9
http://dx.doi.org/10.1063/1.339013
http://dx.doi.org/10.1063/1.469070
http://dx.doi.org/10.1590/S0103-97331999000200014
http://dx.doi.org/10.1063/1.440530
http://dx.doi.org/10.1016/0022-3093(95)00618-4
http://dx.doi.org/10.1016/S0022-3093(96)00618-7
http://dx.doi.org/10.1016/S0022-3093(96)00657-6
http://dx.doi.org/10.1088/0266-5611/16/5/324
http://dx.doi.org/10.1103/RevModPhys.28.393
http://dx.doi.org/10.1016/0167-2738(87)90068-3
http://dx.doi.org/10.1006/jcph.1999.6378
http://jrossmacdonald.com
http://dx.doi.org/10.1103/PhysRevB.71.184307
http://dx.doi.org/10.1088/0953-8984/17/27/012
http://dx.doi.org/10.1063/1.365704
http://dx.doi.org/10.1063/1.368142
http://dx.doi.org/10.1063/1.1850901
http://dx.doi.org/10.1063/1.1434953
http://dx.doi.org/10.1063/1.1636832
http://dx.doi.org/10.1016/S0167-2738(02)00525-8
http://dx.doi.org/10.1103/PhysRevB.7.4491
http://dx.doi.org/10.1016/S0167-2738(97)00458-X

	1. Introduction
	2. Distributions of relaxation times
	3. K0 and K1 temporal responses
	4. All K0- and K1-model frequency responses
	5. CSD and DSD surprises
	6. Effects of varepsilon _D infinity
	7. A data-fitting example
	Acknowledgment
	References

